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At the A to C transition, smectic elastomers have recently been observed to undergo �35% spontaneous
shear strains. We first explicitly describe how strains of up to twice this value could be mechanically or
electrically induced in Sm-C elastomers by rotation of the director on a cone around the layer normal with an
elastic cost dependent on constraints. Second, for typical sample geometries, we give the various microstruc-
tures in Sm-C akin to those seen in nematic elastomers under distortions with constraints. It is possible to give
explicit results for the nature of the textures. Chiral Sm-C elastomers are ferroelectric. We calculate how the
polarization could be mechanically reversed by large, hard, or soft strains of the rubber depending upon sample
geometry.

DOI: 10.1103/PhysRevE.79.061704 PACS number�s�: 61.30.Vx, 83.80.Va, 61.41.�e

I. INTRODUCTION

One of the most remarkable properties of liquid crystals is
their �improper� ferroelectricity when in the chiral smectic-C
�Sm-C�� phase �1,2�. Unlike crystalline ferroelectrics, their
polarization is easily switched, for they are liquids, albeit
with orientational �nematic� and layered �smectic� order.
Thus new types of displays have been based on the fast and
ready response of such liquids to electric fields �2–5�. We
model the mechanically driven switching of soft-solid
analogs—Sm-C� elastomers with both orientation and layer-
ing where imposed strains can rotate the polarization, P.

Nematic order, about an ordering director n̂, is along the

layer normal k̂, in smectic A �Sm-A� phases. Meyer et al. �1�
recognized that when n̂ tilts with respect to k̂ upon entering
the Sm-C phase, then in a chiral system polarization can
exist: denote the direction of the projection of n̂ in plane by

the unit vector ĉ, whence k̂∧ ĉ→ p̂ is an operation that de-
fines a polar unit vector p̂ in a chiral system. Figure 1 shows
the A and C phases, with smectically ordered rods rather
more sharply confined to layers than is realistic. The sponta-
neous polarization is a consequence of ferroelectricity that is
termed “improper” since the order parameter is related to the
tilt �2� rather than the polarization itself as in the case of
normal ferroelectrics.

Liquid crystalline �LC� polymers display the same phases
as classical materials. The rods, in the sketch Fig. 1, are
pendant to main chains which can then be linked to form an
LC elastomer. Nematic elastomers suffer large mechanical
elongations/contractions on cooling/heating to and from the
ordered state. If strains are applied noncoaxially with n̂, di-
rector rotation and further sympathetic shears can develop to
allow shape change without energy cost in ideal systems and
with little energy cost in nonideal systems—so-called soft
elasticity �7,8�. The magnitude of spontaneous distortion on
entering the nematic state sets the scale for the extent of soft
deformation when mechanically induced director rotation oc-
curs.

Sm-A elastomers are not soft because �a� the director is
not free to rotate without taking the layers with it and �b� the
matrix can only deform while affinely convecting its embed-

ded layers with it and respecting the constancy of layer spac-
ing. The smectic layer modulus is much larger than the rub-

ber modulus and hence distortions such as extension along k̂
are very expensive and in most systems they only have small
amplitude �9,10� before instabilities arise. Essentially Sm-A
rubbers behave two-dimensionally; they stretch and contract
in plane only. Their shears have either displacements purely
in plane or, if out of plane, they act to rotate the layers. Sm-A
rubber elasticity is highly complex and nonlinear.

The same constraints of constancy of layer spacing act on
Sm-C elastomers. The transition Sm-A→Sm-C is accompa-
nied by a spontaneous shear, �, not trivially related to the
molecular tilt angle � �6,11–13�, as well as an elongation in
plane and contraction along the layer normal. The spontane-
ous shear is large, ��0.3–0.4 in the experiments of �6�,
Figs. 1�c� and 1�d�. We take subsequent distortions with re-
spect to the spontaneously distorted shape of Fig. 1�b� or Fig.
1�d�, which is the reference state shown relaxed and without
distortion in Fig. 2�a�. �A residual shear visible in the Sm-A
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FIG. 1. �a� Smectic-A phase with parallel director n̂ and layer

normal k̂. The polymer backbones are for the polymeric case with
the rods shown as pendant. A cross-link �dots at either end of the
rod� links polymers into the network. �b� Smectic-C phase with n̂
tilted by � in a direction defined by the unit vector ĉ in the plane.

The third �unit� direction, p̂= k̂∧ ĉ, is into the page. It defines the
direction of polarization, P= Pp̂. For Sm-C elastomers, there is a
spontaneous shear � with respect to its Sm-A parent. Photographs
�c� and �d� �6� are of the A to C transition in elastomers. The cut out
in �d� is the Sm-C sample in Fig. 2�a� that is to be deformed in this
paper.
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state, Fig. 1�c�, is an artifact of the two-step cross-linking
method of achieving monodomains.�

Sm-C elastomers can theoretically be soft since the vector

n̂ and hence ĉ can rotate about k̂ and in doing so induces
shape changes of the body without change in the smectic or
rubber elastic energy. Soft elasticity is predicted to be of
considerable complexity in Sm-C elastomers since the layer
normal can also rotate �11,14�. One can find �14� concrete
examples of soft modes where the layer normal remains
fixed. We denote the angle of rotation of ĉ about an unchang-

ing layer normal k̂0 by �. The soft shape changes associated
with changing � are shears which conclude at �= ��, with
�xz=−2� and all other distortions vanishing. In Fig. 2�b� this
final shear corresponds to reversing the spontaneously
sheared shape in Fig. 1�b� to its opposite form. The sponta-
neous simple shear thus has an important role in delineating
the extent of softness of imposed deformations in smectic
rubbers. Analogously, in experiment and theory of softness in
nematic elastomers, the extent is delineated by the extent of
spontaneous elongation on entering the nematic phase. For �
increasing still further, the original undistorted state is even-
tually regained at �=2�.

As ĉ rotates about k̂ by �, then so too does the polariza-
tion direction p̂. If it is initially along ŷ, then when ĉ has
rotated by �, p̂ has reversed to −ŷ; see Fig. 2�b�. Much of
this paper is concerned with describing how this reversal of
polarization can be achieved by the imposition of shear de-
formation to the elastomer. The applications of shear gener-
ating large electrical changes are obvious and very attractive.
With the rotations of c now defined, we can now give a
concrete form of the true order parameter which is an in-

plane vector �= ��k̂∧ n̂�∧ k̂�∧ n̂=−�k̂∧ n̂��k̂ · n̂�=sin � cos �
�−sin � , cos ��, see �15�, and also �2� using an analogous
form found in superconductivity.

Although it is possible to find soft trajectories of defor-
mation that reverse p̂, these will not in general satisfy bound-
ary conditions imposed by, say, rigid electrodes or clamps.
One can, in some cases, take combinations of �� deforma-
tions that form a texture that overall satisfies the external
constraints, that is, the free energy has been “quasiconvexi-
fied” �16�, a process well understood in the routes to soft
deformation of nematic elastomers �8,17�. We show different
textures for Sm-C elastomers that depend on the constraints
offered by the two sample geometries. The general math-
ematical problem of how textures in Sm-C elastomers make
possible soft deformations in the presence of constraints has
been attacked by Adams et al. �18�. In particular it is possible

to find geometries that are soft under tension and hence
easier to verify experimentally. Otherwise, Sm-C elastomers
can deform via nonsoft alternatives that fully satisfy con-
straints. These will also require the development of textures
during deformation and we calculate some of them here. In
either case there will be barriers �possibly smaller for soft
textures� between the two states of reversed polarization. The
choice between soft and nonsoft alternatives will depend
upon whether one has sheet or slab geometry—we discuss
both choices in Sec. III. In a companion paper to this �19� it
is shown that there are two possible types of stripe domains,
or textures, of which our textures that do not involve the
rotation of smectic layers across the laminate boundary are
drawn from one class. For chiral Sm-C elastomers, the inter-
nal boundaries are in general charged for the class we are
dealing with; the other class has uncharged internal bound-
aries �19�.

Most experiments on Sm-A and C elastomers have in-
volved mechanical and electrical changes to the tilt angle,
e.g., �20�. We are looking at Goldstone modes that instead
rotate the director about the layer normal at essentially fixed
cone angle of tilt. Experiments on polydomain Sm-C elas-
tomers �21� show that this rotation is easily possible and can
in fact lead to gross reorganization of the domain structure,
even its removal. Being polydomain the deformation was not
especially soft, but demonstrated LC mobility in this phase
and offers hope for the deformations we predict here. In any
event, we hope that the range of deformation paths we de-
scribe will urgently stimulate experiments to explore the
ferroelectric response of smectic elastomers to shears that
oppose the spontaneous distortion that arises on leaving the
A state. Our theoretical models will show that the under-
standing of these systems is completely open.

II. MODEL FOR NONLINEAR DISTORTIONS
OF SMECTIC-C RUBBER

We adopt a particular model that successfully describes
experiments on the nonlinear rubbery and smectic elasticity
of Sm-A elastomers, and which has also been applied to
Sm-C elastomers. The underlying nematic rubbery elasticity
is subject only to layers moving affinely with the bulk and
then only allowing distortions of the bulk that then respect
the constancy of layer spacing. Thus material points R0 and

layer normals k̂0 in the reference state transform as �10�

R = �= · R0 and k̂ = �= −T · k̂0. �1�

The deformation gradient �= must respect rigid constraints of
constancy of volume and of smectic layer spacing. This is
because the shear modulus of the isotropic state of the elas-
tomer and for the smectic for deformations not involving
layer spacing changes is ��105–106 J /m3, nearly 2 orders
of magnitude smaller than the smectic layer spacing modulus
for elastomers and 4 orders of magnitude smaller than the
bulk modulus, and hence deformations avoid layer spacing
and volume changes. We discuss in Appendix A how � can
be estimated by measurements in the Sm state. Thus �= is

rigidly constrained so that ��= −T · k̂0�=1 where −T denotes
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FIG. 2. A block of Sm-C rubber �a� initially undistorted with n̂0

and ĉ0� x̂. The layer normal will be taken to remain along ẑ. �b�
sheared by �xz=−2� with respect to its relaxed state. The in-plane
director has reversed, ĉ→−ĉ0 and thus so has the polarization di-
rection: p̂0→ p̂=−p̂0.
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transposed inverse. Det��= �=1 expresses constancy of vol-
ume. The tilt angle between the director and the layer normal

is also rigidly fixed, so n̂ · k̂=cos �.
The free-energy density f and a general soft deformation

�= s are, respectively,

f = 1
2� Tr��

=0 · �= T · �
=n

−1 · �= �, �= s = �
=n

1/2 · W= · �
=0

−1/2, �2�

with W= a general rotation matrix in the nematic case �22�. In
smectic elastomers we have a subset of these deformations
because of the constraints of layer spacing and tilt angle
mentioned above �14�. The shape tensors of the network
polymers, �

=0 initially and �
=n after deformation �when the

director n̂0 has possibly rotated to the new direction n̂� are of
the form �

=0= �r−1�n̂0n̂0+	= �and analogously for �
=n � where r

is the anisotropy in the distribution of polymer shapes. These
tensors encode information about the direction of order.

For simplicity we take the distribution of backbone chain
shapes to be uniaxial. This approximation is discussed in
�14�—effects due to rotation of the long axis of the aniso-
tropic distribution are very large and give a first-order de-
scription of a system that in reality is certainly to an extent
biaxial. In fact there are fundamental reasons why biaxiality
generated by the Sm-C order does not introduce any essen-
tially new elements to the problem—it is locked to the plane
spanned by the layer normal and director. As the principal

director rotates on a cone about k̂, the other two directions
defining a biaxial �

=n are slaves to this motion and retain the
same relation to the main director and to the layers. Appen-
dix B discusses biaxiality in some detail and gives the cor-
responding soft modes. They are only trivially modified from
the uniaxial case and microstructure is modified only
slightly, thus justifying the argument above for the neglect of
biaxiality in the first approximation.

The minimum free energy is 3� /2 which obtains when
there is no distortion, �= =	= and no director rotation, n̂= n̂0
and hence �

=n
−1=�

=0
−1, or when deformations are soft, �= s=�= .

The spontaneous shear �xz
c in this model �12�, denoted

here by �, is given by

�xz
c � � = �r − 1�/
 sin � cos � , �3�

where the combination 
=r cos2 �+sin2 ��r will repeat-
edly follow in the concrete examples of distortions we shall
give. The molecular details are thus simply encoded. At fixed
temperature, � does not change if we also assume that an-
choring is rigid, that is, applied strains do not mechanically
alter the tilt angle. In considering elastomers with extreme
anisotropy of mechanical properties, we are implicitly deal-
ing with smectic elastomers where the layer structure and
other details of molecular ordering are on a higher energy
scale than rubber elasticity �9�. There may be systems in
which tilt is not rigid under imposed strains, a possibility that
has been considered theoretically �11,13,23� and experimen-
tally �24�. It is possible that the chain anisotropy r might
change with tilt � and thus that the � dependence is more
complicated than appears in Eq. �3�. This complication will
not concern us for elastomers at fixed temperature, and thus
fixed tilt, during mechanical experiments. We are not dealing
with smectic elastomers in which layers do not appear to

significantly affect mechanical properties, for instance, elas-
tomers where one can induce compression of the smectic
layers by applying an in-plane strain �25�. Likewise we are
not addressing experiments that �i� use mechanical compres-
sion to alter the tilt angle �thereby changing P and hence a
route to piezoelectricity� or �ii� apply an electric field, alter
tilt, and hence generate strain along the layer normal �an
inverse piezoelectric effect� �20,26,27�.

We now consider three explicit types of deformation in
response to imposed shears that seek to redirect the sponta-
neous shears observed on the A to C transition. The defor-
mations are treated separately. They have increasing freedom
to exercise various sympathetic distortions which serve to
progressively soften the elastic energy penalty.

A. Simple nonsoft response to shear

We are interested in shearing Sm-C elastomers simply,
without rotating or distorting the layers, perhaps by fixing
rigid plates to their xy surfaces. First, consider a simple non-
soft deformation with its inverse transpose:

�= = �1 0 �xz

0 1 �yz

0 0 1
	, �= −T = � 1 0 0

0 1 0

− �xz − �yz 1
	 . �4�

Trivially Det��= �=1, volume is conserved, and �= −T · ẑ= ẑ, the
layer normals are not rotated and their separation is un-
changed by the action of �= . The 0 and 1 entries in Eq. �4�
ensure that the xy plates do not change shape.

We take an initial ĉ0= x̂ as in Fig. 2�b� and impose a shear
�xz. The shear �yz is the relaxation expected as n̂ is induced

to rotate by � about k̂ toward ŷ. Inserting �= into f and
minimizing over �yz and � gives the optimal free energy and
relaxation as a function of �xz. The �= of Eq. �4� is not soft:
since the director is being rotated, the elongation associated
with it is also rotated so one expects extension along y, con-
traction along x, and some yx shear in plane �see below
where we successively allow these relaxations�. There is a
cost of constraining diagonal elements to 1 and some shears
to 0, leading to a threshold, �1, before �yz relaxation and
rotation of ĉ starts. Until then the free energy is hard with a
corresponding modulus; see the curvature of the initial part
of Fig. 3�a� and full details in Appendix A. For the r=2, �
=� /6 chosen for illustration throughout, the spontaneous
shear would be �=
3 /7�0.246. When relaxation starts, the
free energy is softened considerably since now shape change
can be more by rotation of the long axis of the polymer chain
distribution than by an expensive distortion of the chains.
The shear �yz and rotational � relaxation, Fig. 3�b�, are both
initially singular. Director rotation is directly observable op-
tically. We defer discussing it until we consider sample ge-
ometry and the questions of textures and ferroelectric switch-
ing. The thresholds are slightly complicated functions of r
and � that can be found analytically from the free energy.
The singular forms arise because both ��yz and �� give the
same �xz. Thus for instance �xz��2 or conversely there is a
square root singularity ��
�xz, and similarly for �yz.

The yz shear reaches a maximum numerically equal to �
at �=� /2 and �xz=−� since at this imposed shear ĉ points
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along ŷ. The anisotropy now along ŷ is analogous to the tilt
of the anisotropy along x̂ in Fig. 1�b�. The same yz shear
develops as was the case with xz shear in going from Sm-A
to Sm-C in Fig. 1. But the free energy is instead maximal at
this shear. It then declines back to its minimal value 3� /2 for
an imposed shear of −2�. The yz relaxation vanishes, and �
attains �, in a singular manner at a threshold, �2, equivalent
to that at small �xz, before the xz shear reaches −2�. In
nonideal systems �semisoft elastomers� the free energy
would not be at an absolute minimum at �=�. We discuss
semisoft response below in considering the role of dispropor-
tionation. The singular behavior is seen and expected for
analogous distortions involving mechanically induced direc-
tor rotation in nematic elastomers; see the experiments of
Finkelmann et al. �28�. The imposition of shear in a slab
geometry �discussed later in Fig. 7� is straightforward. It is
also possible in sheets of the form of Figs. 1�c� and 1�d�, up
to a certain maximum shear where wrinkling onsets. Even
corresponding Sm-A sheets, which are certainly not soft,
have been successfully sheared to investigate mechanically
induced director tilt into the C form �the mechano-clinic ef-
fect� �24,23�.

B. Additional nonsoft shear relaxation

It is possible to find slightly softer deformation trajecto-
ries than that illustrated above by including the yx compo-
nent of deformation. For systems with clamps allowing
changes in the shape of the xy section of the elastomer, or for
microstructures that we will explore below, this extra free-
dom might be a way of reducing the elastic energy between
the two minimal states at �=0 and �=�. Thus the deforma-
tion gradient and its inverse transpose are, respectively,

� 1 0 �xz

�yx 1 �yz

0 0 1
	 and � 1 − �yx 0

0 1 0

− �xz �yx�xz − �yz 1
	 , �5�

where, with the aid of the latter, one can confirm that the
layer normal has not been rotated nor the layer spacing
changed by the imposed deformation. With this greater free-
dom, the threshold to both director rotation and strain relax-
ation can be avoided. Thus the free-energy cost is lowered
from the previous trajectory; see the dotted curve also plotted
in Fig. 3�a� for direct comparison with the energy when less
relaxation is permitted. This minimal free energy arises from
the optimal deformation gradient �= , with elements explicitly
given below, being put into f of Eq. �2�. The same procedure
must be followed still further below when an explicit form
for a soft deformation is given, but the result for f is then
trivial �the unchanging value 3� /2�. Here, the components
of the optimal deformation gradient tensor are

�xz = −
r − 1



sin � cos ��1 − cos �� � − ��1 − cos �� ,

�6�

�yz = ��1 −
r − 1

a2r
sin2 � cos �sin � , �7�

�yx =
r − 1

2a2r
sin2 � sin 2� , �8�

with the combination a2=cos2 �+ �
 /r�sin2 ��1. The yx
and yz shears plus the accompanying director rotation are
plotted in Fig. 4 against the imposed xz shear.

The rotation is straightforwardly cos �=1+�xz /� from
Eq. �6� and must be inserted into Eqs. �7� and �8� to get
�yz��xz� and �yx��xz�. The singular rotation initially and fi-
nally is just that of the cos−1 function:

� = � 
− 2�xz/� for �xz  0, �9�

� = � 
2�2 − �xz/�� for − 2�  �xz. �10�

At �=� /2 one has �xz=−�; the xz section of the sample has
gone halfway between the states of Figs. 2�a� and 2�b�.
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FIG. 3. �a� The elastic free energy, in units of 1
2�, against im-

posed shear �xz�0. The dotted line is energy cost when allowing yx
relaxation as well. �b� Rotation � of the in-plane director ĉ about
the layer normal and the concomitant yz shear relaxation, both start-
ing and concluding at thresholds �1 and �2, respectively. The an-
isotropy is r=2 and the director tilt is �=� /6.
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FIG. 4. The yx and yz shears and in-plane director rotation �
against imposed shear �xz for the softer case where yx relaxation is
permitted �r and � as before�. The light vertical dotted line is at
�xz=−� to emphasize the asymmetry about the point where the
director is transverse; see Appendix C.

J. M. ADAMS AND M. WARNER PHYSICAL REVIEW E 79, 061704 �2009�

061704-4



The new shear, yx, is antisymmetric about �=� /2. It
must vanish when ĉ points along ŷ since the natural change
in the sample would be to elongate along ŷ �which we as yet
suppress, �yy =1� and to yz shear. There is no need for in-
plane shape change, �yx=0.

The yz deformation is numerically equal to � at �=� /2
as one would expect—when the director has rotated by � /2
the y axis has a similar significance to that of the x axis
initially, but the energy is now high. This intermediate state
�=� /2 with n̂ in the yz plane and ĉ= ŷ is where there must
be maximal yz distortion due to director rotation redirecting
the elongated dimension of the sample. Indeed the energy
can be seen to be symmetric about � /2 �actually seen in the
plots against �xz to be symmetric about the value −��. How-
ever, since we are dealing with large deformations that do
not add linearly, the additional shear introduces an apparent
asymmetry about �=� /2 into the form of the yz relaxation.
�In Appendix C, we show that this apparent asymmetry, and
more asymmetries to be discussed below, are simply conse-
quences of the geometric need to compound rather than add
large deformations.� The yz relaxation reaches a numerically
maximal value at �= 1

2cos−1��r−1�sin2 � / ��r−1�cos2 �+r
+1��.

The energy maximum offers the same height of barrier
between the minimal states as before. With respect to the
minimal value of 3� /2, the barrier is 2fbar /�
=2�r−1�2sin4 � / �r�r+ �r−1�cos 2���. As in all expressions
involving the energy cost on rotation or shear, it scales as
�r−1�, that is, it vanishes on isotropy �r=1�. Otherwise, the
energy is somewhat reduced, see the dotted curve in Fig.
3�a�, but at the expense of a more complex system of sym-
pathetic shears. We now explore a final shear scenario to
lower the free energy of distortion still further to its minimal
value.

C. Soft deformations

If the rubber has total freedom to shear and distort as the
director rotates, then in ideal systems there is zero accompa-
nying rubber elastic cost. The mechanism arises because the
distribution of chains is accommodated by the changing
shape of the body without the distribution’s distortion and
thus with no decrease in the entropy or modification of the
liquid crystal order. Such distortions are well known in nem-
atic elastomers �7� deep into the nonlinear regime. They have
been explored theoretically in Sm-C elastomers �11,13,14�
where the constraint of layers must be rigidly observed. A
soft deformation gradient �and its inverse transpose�, which
leaves the layer normal unrotated and the layer spacing un-
changed, is

�= = ��xx 0 �xz

�yx �yy �yz

0 0 1
	 , �11�

�= −T = � �yy − �yx 0

0 �xx 0

− �yy�xz �yx�xz − �xx�yz 1
	 , �12�

where �zz=�xx�yy =1 from incompressibility, Det��= �=1. The
elements of the tensor are �14�

�xx = 1/�yy = a��� , �13�

�xz = ��− a��� + cos �� , �14�

�yx =
r − 1

2ra
sin2 � sin 2� , �15�

�yz = ��sin � −
r − 1

2ra
sin2 � sin 2� , �16�

with a2=cos2 �+ �
 /r�sin2 � which was introduced below
Eq. �8�, and � given in Eq. �3�. A factor �1− 


r � appearing in
the expression derived in �14� has been replaced by the
equivalent �r−1�sin2 � /r. The same types of shears as in Eq.
�5� enter, but we allow the elongations and contractions �xx
and �yy to adjust to the changing natural length in the x and
y directions as the polymer chain distribution anisotropy is
rotated by �. It is this final element, plus the concomitant
further changes to the shears, that allows the deformation to
be soft. Figure 5 shows the xx contraction and the yx and yz
shears against the imposed xz shear.

In Fig. 6 we show snapshots of an initial cube deforming
under a soft �= as the ĉ director advances �right to left�
through �=0, �� /2, �2� /3, and ��. It starts from Fig.
2�a� and ends in �b�, but we are viewing it from along the z
axis rather than along the y axis. Such a monodomain re-
sponse, either along the +� or −� route, may not conform to
macroscopic constraints, for instance, those that suppress �yz
shear. Much of the remainder of this paper is about adding
�� distortions in microtextures to conform to constraints.
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FIG. 5. The yx and yz shears and the xx contraction against
imposed shear �xz for soft deformations �r and � as before�.
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y
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FIG. 6. Soft deformations of a cube of Sm-C rubber with r=8
and �=� /6 �as before� viewed along the smectic layer normal. The
c vectors and the corresponding � are shown.
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The rotation � is of the singular form as before, with
slight modifications that are apparent on comparing the soft
�xz���, Eq. �14�, with the corresponding xz deformation gra-
dient, Eq. �6�, in the hard case with yx relaxation. Explicitly,
���xz� follows from Eq. �14�:

� = cos−1� r



�
�


r
2

+ �1 −



r
��xz

�
2

+
�xz

�
��

�17�

with singular rotation initially �and analogously finally�:

� � �
2r



�xz/� for �xz  0. �18�

Note that �xz is no longer −� when the ĉ director is along ŷ,
that is, �=� /2, but is instead

�xz = − �

/r = − �
1 −
r − 1

r
sin � cos �

� − ��xx�� = �/2� , �19�

a numerically smaller value than before. Figures 2�a� and
2�b� correspond to shears of 0 and −2� and when the system
has �=� /2 it is geometrically halfway between. The appar-
ent inconsistency, because the shear is not −�, is again a
consequence of nonlinearity; see Appendix B. However,
when the ĉ director is transverse, there is, as expected, no
in-plane shape change, �yx=0, as can be seen in Eq. �15� for
this �. The yz shear can be seen to be � at �=� /2, but since
�xz�−� there, then �yz��xz� is asymmetric about −� as in
the previous subsection, which is because of the geometrical
nonlinearity of finite deformations.

III. SAMPLE GEOMETRY AND TEXTURED RESPONSE

The form of deformation in response to an imposed shear
�xz or director rotation � �driven perhaps electrically� will
depend on what components of �= are inhibited by geometri-
cal constraints. We now discuss different sample geometries.
Hiraoka et al. �6� created monodomains and observed large
spontaneous shears on the Sm-A→Sm-C transition in a sheet
geometry, Fig. 7�a�, where the y dimension of the sample is
small. Alternatively smectic actuation, albeit from electro-

clinic effects in Sm-A� elastomers where tilt and shear are
purely electrically driven, has been achieved �20� with small
shears in the slab geometry of Fig. 7�b�, a geometry that is
also highly interesting for Sm-C elastomers. In each case the
sample is effectively held by rigid clamps—tape overlapping
the sheet sample, and by glass plates in the slab case. We
expect changes in the polarization, P to be along ŷ and hence
suitable flexible electrodes would be needed for detection of
charges on the xz faces for the sheet sample. In the slab case,
rigid xy electrodes under the xy plates are suggested for de-
tecting xz surface charges by capturing the lines of E emerg-
ing from the sample surfaces with y as normal.

Near the rigid clamps we have �xx=1 and �yy =1 in the
slab case. For sheets this constraint is over a small fraction of
the sample. The variation in �xx, say, in the z direction away
from the boundaries to more favorable bulk values is slow,
thus generating �by compatibility� minor �xz additions to the
deformation. Under these circumstances one could expect
elastically the sheet deformations to be of the soft form Eq.
�11� where the additional freedom gives a much reduced en-
ergy cost. By contrast, the slab geometry imposes a constant
�xx=1 throughout because the sample is thin in the z dimen-
sion. Slabs then could at best have the distortion Eq. �5�
where the diagonal elements are all 1. Analogously in slabs,
rigid xy plates would suppress in their close vicinity any �yx
shear. It is possible that in the bulk of slabs �yx is suppressed,
though z variation of �yx generates through compatibility �yz
which we are already considering and it is possible that even
for slabs, in the bulk one must consider �yx�0.

In both sheets and slabs, we have seen how imposing �xz
induces macroscopic translations in the y direction resulting
from the accompanying �yx and �yz shears. Such shears dras-
tically reduce the energy. However, when the rigid bounding
plates are constrained to move only in the x direction, there
is a conflict with the sympathetic shears that can be over-
come by the development of microstructure or textures of
bands of yz shears of alternating sign, corresponding to ro-
tations of alternating sign, ��, but with the same �xz. At the
macroscopic level the �ij components that are odd in � can-
cel with each other, and those even in � add. Thus a body,
with �� rotations and thus also � shears in equal propor-
tions, as a whole has a deformation gradient of the form

�=mac = ��xx 0 �xz

0 �yy 0

0 0 1
	 �20�

even though locally �yx�����0 and �yz�����0. �The xx
deformation gradient might vanish, �xx=1, as discussed
above for slabs.� The alternation ensures no macroscopic,
constraint-violating, ŷ displacements develop across the
sample. Such textures will be required for all three deforma-
tions we have explored, soft or nonsoft. The development of
microstructure is analogous to that in the soft deformations
of nematic elastomers where the underlying soft deforma-
tions are observed, but where necessary in textures to allow
the underlying soft response to occur �29�. Texture is not the
cause of softness, but a symptom that arises from softness in
the presence of constraints.
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FIG. 7. �a� Sheet and �b� slab geometries for Sm-C elastomers.
Rigid clamps �shaded� are shown on the xy sample surfaces. �xz

shear displacements are indicated by arrows. A few smectic planes

are indicated in each case, with normals k̂0. polarization P in the y
direction �of extent w� emerges from the xz sample surfaces. Lines
of electric flux in the slab case are captured by enveloping the small
xz surfaces by overhanging, split xy electrodes, their charge being
identified by �.
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The reader can see a concrete example of how to con-
struct �=mac by putting, say, the �=� /2 body of Fig. 6 on top
of that with �=−� /2. �At this special �, this picture is close
to that in Fig. 8 below.� Looking at the position of the overall
top xy surface with respect to that of the bottom, it is clear
that there has been a xz shear, but that overall there is no y
relative displacement and thus overall no �yz. What is impor-
tant is that the bodies are placed on top of each other, rather
than in any other configuration, a question of the compatibil-
ity of textures to which we turn below. With the above �=mac
the energy will have been reduced �to zero in the ideal soft
case� and yet overall the body has conformed to boundary
conditions that are inconsistent with the underlying deforma-
tions �4�, �5�, and �11�. The development of textures to
achieve soft response in the face of incompatible boundary
conditions quasiconvexifies the free energy, a process well
understood in Martensite �16� and in nematic elastomers
�8,17�. It is important in the response of the constrained
samples that we are studying here.

We now derive the full form of the textures that arise for
the two geometries that do not rotate the smectic layer nor-
mals. We limit ourselves to such textures since then the xy
sample faces can then retain their orientation as deformation
proceeds. Recall that the textures we have described, with
unrotating smectic layers, are only part of one of a possible
two families of textures in Sm-C elastomers �19�.

A. Forms of textures

Neighboring laminates in a texture with deformations �=��

that are in contact through a common surface must suffer
deformations that are rank-one connected �16�, otherwise
there is a geometric inconsistency between the specification
of translations of their interfacial elements by �= +� and �= −�,
that is:

�= +� − �= −� = a � s� = 2� 0 0 0

�yx 0 �yz

0 0 0
	 �21�

since �yx��� and �yz��� are both odd about �=0 whereas
�xz���, �xx���, and �yy��� are even. Here a is a vector in a

laminate’s surface in the target state and s� is the surface
normal of a laminate back in the reference state, that is the
normal to the boundary of a region that will, after rotations
of ��, transform into a laminate. It is straightforward to see
that �uniquely�

a = �0,1,0� and s� � ��yx,0,�yz� . �22�

As the textures evolve with �, their laminates have normals
in the zx plane and, if they rotate at all with changing �, it is
about the y axis. The texture normal in the target space, s�� , is
given by the usual transformation for normals of planes em-
bedded in an elastic solid, s�� =�=�

−T ·s�.

1. Textures without elongations and in-plane shears

For the simple deformation Eq. �4� with �yx=0, the nor-
mal is s�=s�� � �0,0 ,�yz�. Thus the textures and the smectic

layers share the unchanging normal s�= k̂0= ẑ, Fig. 8. Suc-
cessive xy slices of the solid suffer alternating �yz transverse
shears. This pattern is a possibility for slab geometries, but
less likely for sheets where a soft texture is a possibility we
examine below. There is no question of polarization charges
residing on the internal surfaces of this texture since P ro-
tates in the plane of the laminates and never passes through
the internal interfaces. This texture is a special case of the
generally charged family.

2. Textures with in-plane shears

For both the other choices of deformation, the normal s��
of the transformed laminates has a universal form regardless
of softness, that is, it holds for both classes �B� and �C� of
Sec. II:

s�� � ��yy�yx,0,�yz − �yy�yx�xz� �23�

→�sin � cos �,0,cos �� . �24�

Therefore the current �target space� laminate normal s�� has
an angle, ��, to the z axis:

��� = tan−1�cos � tan �� . �25�

Contrast this case with the more trivial case above where the
laminate normal was along z, that is, along the layer normal.
The need for more subtle laminates can be seen in Fig. 6
where, except for �=0, �� /2, ��, the top surface is
sheared away from its initial square shape with shears
��yx�0 of alternating sign. Now stacking �� bodies on
top of each other to eliminate a macroscopic �yz shear is
impossible since the faces do not match, unless the laminates
are tilted with respect to the layers.

For different rotation angles � of the ĉ director around k̂0,
the normal s� or s�� to the laminates takes differing rotation
angles about the ŷ axis, Fig. 9. For �=� /2, both �=0 and

��=0, that is s� and s�� are along k̂0 and the laminates are
aligned with the smectic planes. Again Fig. 6 makes this
clear—at this � there is no yx shear and no impediment to
simply stacking the � regions as simple laminates. To ex-
plain why rank-one connectedness requires laminates rotated

xz

y

�xz
�xz

��yz��yz

��yz ��yz

FIG. 8. A slice through a solid deforming with a textured ver-
sion of Eq. �4� for �= . Alternating ��yz shears lead to no overall
macroscopic �yz but to the desired imposed �xz.

MECHANICAL SWITCHING OF FERROELECTRIC RUBBER PHYSICAL REVIEW E 79, 061704 �2009�

061704-7



with respect to the smectic layers, Fig. 9, we transform �=
from the �x ,y ,z� frame to one based upon s, that is, �� ,y ,s�
by rotating both the target and reference states, thus �= →�= �
=W= ·�= ·U= T by � about y. The target and reference state rota-
tions are W= and U= , respectively. The rotations have the effect
of mixing the �yx and �yz shears to give a �y�=cos ��yx
−sin ��yz, which vanishes by definition of s, Eq. �22�. The
laminate planes at this orientation no longer suffer the in-
plane shears that would make them impossible to match
across their interfaces.

Our analysis of soft modes and nonsoft modes with yx
relaxation has been based upon the free rotation of the nor-
mal of the system of laminates about the y axis. It is possible
that the motion of the laminate surfaces, through the assem-
bly of smectic layers that is stationary, is in fact pinned. A
rubber is liquidlike at the molecular level, accounting for the
extreme extensibility of rubbers and, for instance, their mo-
tionally narrowed NMR lines. It is known that laminates
evolve and rotate easily in nematic elastomers responding at
low-energy cost �29�. Experiments on polydomains �21�
show that it is likely that textures in smectic-C elastomers
can evolve under imposed strains and that low-energy defor-
mations are thus possible as we propose. Experiment is vital
to determine whether pinning is active or not.

Another uncertainty is the energy cost of laminate walls.
The directors on opposite sides of a laminate surface are
rotated to ��. At �=� /2 the layers and laminates share a
common normal and laminate surfaces are a � twist-bend

wall. At other values of �, the laminates and layers are ob-
lique to each other and the wall is more complicated. In any
event there is a cost to walls that demands calculation when
experiment in the two geometries has been carried out. This
energy cost and any competing one associated with the tex-
ture will determine, as in nematic elastomers, the ultimate
length scale of the structure. A simple qualitative argument
yields the usual scaling form of the texture periodicity: con-
sider a simple case where the texture is xy slabs of thickness
L and with surface energy � per unit area. Let wi be the
extent of the sample in the ith direction. Then there are wz /L
slabs each of energy �wxwy. Looking ahead to our analysis
of polarization, there are strips of surface charge alternating
with period L on the yz ends of the sample; see Fig. 9. These
charges give fields extending outside the sample an x dis-
tance �L �by Poisson’s law they decay exponentially in the
x direction with decay length L�. The fields scale with
P cos � and thus the field energy outside the sample is of the
form �pLwywz where �p��0P2. The overall energy has com-
peting L terms. Minimization over L gives L�
wx� /�p.
More complicated calculations are needed for greater preci-
sion.

3. Disproportionation

One perhaps important possible form of texture remains, a
simple disproportionation that might occur in both slab and
sheet geometries. Analogous disproportionations have been
proposed in nematic elastomers �30�, though in practice it
seems textures are selected. The top portion of the sample is
xz sheared to its maximum soft extent, −2�, with rotation
�=� and the bottom portion is weakly xz sheared by ��h�

with unrotated director; see Fig. 10. The bottom must be
sheared so that it has a shear stress to match that in the upper
part. Any discontinuity of this stress on traversing the inter-
face between the two parts would lead to a net body force.

If the material were ideally soft then the shear stress in
distorting the upper portion would be zero and the lower
portion would thus remain unsheared. The two states would
be separated by a � twist-bend wall. It is possible that a
sample might deform this way if rotations of textures are
pinned and if the energy cost of laminate interfaces discussed
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FIG. 9. �Color online� An initially cubic sample deforming
softly with laminates of yx and yz shears of alternating sign and
with xz shear advancing from 0 to −2� in steps of �� /3 in director
rotation � about the z axis �marked on figures; see also the c rel-
evant to each laminate as it emerges at the top face of the sample�.
The smectic layers �a few dotted on the �=0 snapshot� are unro-

tating as � changes and retain their normal k̂0=z. The alternating
shear deformations lead to no corresponding macroscopic shears
whereas the imposed �xz does. The laminate normal s�� in the de-
formed �target� state is shown for the example of �=� /3. It starts
and finishes parallel to n̂ but in general makes an angle � with the

layer normal k̂0 given in the text. The deformations away from the
initial shape �light reference frame given in ��0 pictures� reveal
the slight contraction �xx along x and a compensatory lengthening
along y, see, e.g., �=� /3, for ��0, ��. The �� /2 case is like
Fig. 8, that is, with �=0, but with �xx ,�yy�1.
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FIG. 10. A sample deforming by disproportionation. The mac-
roscopic �xz shear displacements are indicated by heavy arrows and
consists of a fraction �lower� of weakly sheared ��h� sample and the
complementary �upper� fraction distorted by −2�. The macroscopic
shear is �xz.
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above is too high. Only one interface is required for this
mode of deformation and that interface’s normal does not
rotate with increasing over all �xz. Simple geometrical con-
siderations determine the volume fraction � of the sample
that is transformed into the �=�, �xz=−2� state. For this
soft case it is �=�xz / �−2��. Thus the interface migrates
down the sample of Fig. 10 as �xz increases. A particularly
simple ferroelectric response then arises, as we see in the
next section, and no internal surfaces are charged and
thereby add to the energetic cost.

In practice there are small, so-called “semisoft” elastic
energies to be paid in nonideal elastomers where softness
would otherwise hold. Our current smectic elastomer model
is that of nematic elastomer distortion energy under smectic
layer spacing constraints. In nematic elastomers nonideality
is known to introduce a threshold before essentially soft de-
formation associated with director rotation onsets. There is a
plateau where the stress increases only slowly until the di-
rector fully rotates during which the sympathetic director
rotation and the elongations, contractions, and shears are
identical in form to the ideal case �8�. For nonideal Sm-C
elastomers disproportionating, the commons stress in the two
portions determined by the upper portion is that characteris-
tic of the end of the semisoft deformation plateau, that is, the
maximum value of low stresses before hard deformation
starts. To develop a matching stress, the bottom portion
would then have to xz shear as well, without any sympathetic
deformations �since they would not be rank-one connected to
the state of the upper portion�. This would be a hard defor-
mation and thus of small amplitude ��h�, as sketched in Fig.
10. Now the volume fraction � that is transformed into the
�=� state is �= ��xz−��h�� / �−2�+��h�� and the interface
would migrate down the sample as �xz→−2�.

However, because of nonideality in practice such simple
disproportionating response would not seem probable—the
alternative is to form textures in the way we have outlined
above. The stress due to semisoftness is always lower in the
textured case than the disproportionated case except at the
end of the rotation of the director when they are equal. In the
textured case one would initially find that the semisoft stress
is small because ���0. However in the disproportionation
case the director jumps from �=0 to � in part of the sample,
which has a much larger associated semisoft stress because
of the larger director rotation. Textures would therefore de-
velop at lower energy cost than the higher stress alternative
of developing the same �xz through disproportionation. The
favoring of textures over disproportionation would be lost as
samples approach extreme softness and the cost of internal
boundaries gets relatively high.

B. Alternative route to observing microstructures

We have proposed experimentally observing textures in
Sm-C elastomers from thin samples in the sheet geometry,
and polarization microscopy. Classical buckling instabilities
are eventually observed in shear experiments of this sort and
may obscure the textures �23,24�. Alternatively, a tensile ge-
ometry provides a simpler experiment to reveal soft defor-
mations in Sm-C elastomers and their associated microstruc-
tures.

A sample of elastomer with an arbitrary angle � between
the proposed elongation axis and the layer normal can be
prepared by cutting from a larger sample as illustrated in Fig.
11�a�. When this sample is stretched then it will deform
softly provided it can form appropriate microstructures �18�.
The extent of the soft deformation is illustrated in Fig. 11�b�.
For small � there are no microstructures that permit a soft
deformation, but for an interval of � from above � /8 until
close to � /4, the sample can deform softly.

IV. FERROELECTRIC RESPONSE

When a polarization P changes on passing through a sur-
face, by Gauss’s theorem a surface charge density �=
−�P� develops that is equal to the change in the normal
component of P from one side to the other. Thus at the xz
external surfaces of both sample geometries, ��xz�= P cos �
� Py; see for instance the explicit decoration of xz surfaces
with charges in the �� /3 snapshots in Fig. 9. We now relate
��xz� to the imposed deformation �xz in the three cases of
deformation:

�i� The nonsoft deformation with a threshold has singular
director rotation against imposed �xz because it too is essen-
tially of the cos−1 form that subsequent deformation modes
are also shown to be. Between �1 and �2, the variation is
almost indistinguishable from cos �= �2�xz−�1−�2� / ��1
−�2�, where �1 and �2 are the thresholds to director rotation
that arise in this constrained case. Thus the surface charge
evolves linearly with �xz:

��xz� = − P�2�xz − �1 − �2�/��1 − �2� . �26�

�ii� For the nonsoft deformation without a threshold, Eq. �5�,
one sees directly from Eq. �6� that the xz surface charge
density is

��xz���xz� = − P�1 + �xz/�� . �27�

Recall that the imposed shear �xz varies from 0 to −2� and
thus this surface charge reverses linearly with the applied
shear deformation. It would not change any further, were the
shear to be increased beyond −2�.

�iii� When deformation is soft, the connection between
cos � and �xz is slightly more complicated, despite being
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FIG. 11. �a� A sample with the layer normal at an angle � to the
long direction is cut out of a monodomain Sm-C. �b� The shaded
region is that of elongations � for tension angles � for which the
sample remains soft �for �=22.5° and r=2�.
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linear at the start and end of the rotation. Equation �17� for
cos ��� / P gives the explicit shear dependence of the xz
surface charge density:

�soft
�xz� = − P

r



�
�


r
2

+ �1 −



r
��xz

�
2

+
�xz

�
� . �28�

A. Charging of laminate surfaces; overall electrostatic energy
and mechanical stability

For the nontrivial textures with the laminate normals not
along the layer normals, the normal component of the polar-
ization can reverse at the internal surfaces separating lami-
nates in the texture. One must then consider the energies of
the resulting internal surface charge distributions in both the
cases of sheets and slabs. The laminate normals s�� rotate
about y in the xz plane. The y component of P, giving rise to
the xz external surface charges discussed above and pictured
in Figs. 2 and 7 and the �� /3 part of Fig. 9, does not
contribute to the internal sheets of charge. The internal
charges arise rather from the reversal of the Px component at
the laminate surfaces, that is, �lam� Px̂ ·s�� ; see Fig. 9. The
internal surface charge density is therefore

�lam

P
= � sin � sin � = �

1

2

tan � sin 2�

�1 + tan2 � cos2 ��1/2 .

�29�

One must ask then whether these charges have a significant
energetic effect.

In the sheet geometry relatively little of the otherwise
uniform field generated by the xz sheets of external surface
charge leaks out of the sample. The y-internal electric dis-
placement in the sample is D�y�

int =��xz�=−P cos �. If the tex-
tures are fine, the electric displacement between internal sur-
faces of alternating charge is also not lost, and is Ds

��
lam

= P sin � sin �, from Eq. �29�. This D is in the �s�� direc-
tions.

Finally the component of Px that intersects the external yz
surfaces generates ��yz� external surface charge densities; see
the charges shown on the yz surfaces of the �p̂ /3 snapshot
of Fig. 9. These are ��yz�=−P sin � cos � and change sign
between the yz ends of neighboring laminates as �→−�.
The charges generate small effective internal fields because
the yz surfaces are small, are widely separated in the sheet
geometry and, in any event, are oppositely charged in stripes,
so we can ignore their energetic effect.

At the exceptional points �= �� /2, the internal fields
Eint

y =0 and Elam=0, the latter because the laminate normals
are along the layer normals z. All the surface charges are
confined to the yz external surfaces which we have just ar-
gued generate an ignorable internal field.

The overall electrostatic energy density, fel, is thus essen-
tially only from internal fields generated by charges appear-
ing on the internal surfaces of textures. These fields depend
in part on the anisotropic dielectric tensor of the elastomer
which we represent for simplicity, see Appendix D, by a
single averaged value �:

fel =
1

2

P2

��0
�cos2 � + sin2 � sin2 ��

=
1

2

P2

��0
cos2 �/�cos2 � + sin2 � cos2 �� . �30�

There is a weak � dependence in 1 /� that we estimate in
Appendix D and argue that we can neglect in the estimates
below.

At first sight this energy is perhaps alarming. fel is maxi-
mal, fel= P2 / �2��0� at �=0, �� and is minimal, fel=0, at
�= �� /2. For soft deformations, where there is no elastic
cost, the director should spontaneously rotate to �= �� /2
and the sample should spontaneously shear to −�. It is likely
however that the xz external surfaces, that are initially
charged, attract counterions from their surroundings and are
neutralized. There is accordingly no electrostatic cost at �
=0 �and finally at �= ��� since no internal field Eint

y is
generated. The only internal fields are those between succes-
sive �internal� laminate surfaces �unless these too are neutral-
ized by internal conduction processes�. The electrostatic en-
ergy density is then simply

fel� =
P2

��0

sin2 2� sin2 �

cos2 � + sin2 � cos2 �
. �31�

There is thus no electrostatic cost at �=0, �� /2, ��. All
these points are local minima of the free energy and the cost
in deviating from these points means that spontaneous rota-
tion is avoided. It does suggest however that there is a com-
plex energy associated with the path between �xz=0 and −2�
for softly deforming elastomers. Should the deformation be
of the hard type with �yx�0, which demands complex tex-
tures as in the soft case, then the elastic energy has to be
added to the electrostatic energy fel� , the resultant of which
depends on the relative scale of rubber elastic and ferroelec-
tric energies.

Values of P for smectic C� systems are in the range
10−5–10−4 C /m2 �8�, with saturation values of P for some
polymers used for Sm-C� networks being reported as large as
2�10−3 C /m2 �26�. One must compare the resulting energy
density, � 1

2 P2 /�0, with elastic energy densities in the prob-
lem which are 1

2�10−2, taking the strain energy at the maxi-
mal �barrier� value, 10−2 in units of � /2; see Fig. 3�a�. For
��105 J /m3 this puts the ratio of the electrostatic to elastic
energies in the range 10−2 to 1—under some circumstances
electrostatics may be important, making the need for experi-
mental results still greater to discern the different mecha-
nisms that will be selected by these competitive energies. It
is possible that one might have complicated free energies of
deformation that result from the sum of the elastic and elec-
trostatic influences.

In the slab geometry hard deformations should result be-
cause of the rigid constraints imposed near the surface of the
clamps. Consequently the laminate normals are along the
layer normals and hence always perpendicular to the polar-
ization that rotates about the z axis as � evolves. Accord-
ingly, no internal sheets of charge develop for intermediate
imposed shears.
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The charges on the xz and yz external surfaces give rise to
fields that largely leak out of the sample and hence again we
ignore their contribution to the energy. The leaking field lines
from the xz surfaces can be captured by overhanging elec-
trodes as in Fig. 7�b� and hence the surface charge, and P,
can be measured.

As mentioned above, we have described only one of a
possible two families of textures in Sm-C elastomers. The
other family of textures can be shown �19� not to have
charges accumulating on their internal surfaces. They are not
necessarily applicable to the constraints of unrotating smec-
tic layers that we have considered.

B. Electrically driven actuation?

The inverse response when applying a potential to elas-
tomers in the two geometries in order to generate a shear
strain also needs quantifying. Elastic barriers to deformation
still exist, but now one is coupling external potentials to the
charge layers that exist on the free surfaces, that is, achieving
an energy change per unit xz area of sample of 1

2�V on
achieving �=0 as a result of applying a voltage V across the
sample and mechanically switching as far as the maximum in
the elastic energy barrier �where �=� /2�. For the favorable
case of the sheet, taking V=103 V and thickness w=1 mm,
the relative energy densities �electrical to elastic� are
VP / �w�10−2��10−2−1 considering the range of values of P
given above. The reason is that internal electrical fields that
set the scale of energies above are Eint�107 V /m, much
larger than those typically able to be applied here. One con-
cludes that electromechanical actuation at very large shear
strains ��1� will require the sheet geometry with large fields.

C. Experimental observations

The internal fields, which we argue could play a signifi-
cant role in fixing the mechanical stability of these elas-
tomers in their textured state, are perhaps open to direct ob-
servation that might help determine what rotations are
accompanying shears. These intense fields are given, see Ap-
pendix D, by E= 1

�0
�=−1 ·D with D= Ps�s�� the electric displace-

ment generated by the internal surface charges and directed
along the laminate normals. Thus Ei=

1
�0

�is�
−1Ds�. The field is

not purely along the laminate normal because this direction
is not a principal direction of the dielectric tensor. Guest
species with, for instance, characteristic absorption or fluo-
rescence could be aligned with the field rather than with, say,
the director or smectic layer normal. In particular a distinc-
tion between the field and director directions emerges as
soon as rotation starts and would be an independent check of
the development of microstructure. Absorption or florescence
probes suggested above are invariant under s�� →−s�� and
thus would not find the alternating texture structure nugatory.
It is likely that the choice of geometry, slab or sheet, will
yield very different results.

V. CONCLUSIONS

The deformation path taken by a smectic-C elastomer in
having the direction of its spontaneous polarization mechani-

cally or electrically rotated and eventually reversed is calcu-
lated for slab and sheet geometries. We are concerned with
the Goldstone mode of director rotation about layer normals
on a cone of fixed angle, rather than mechanical and electri-
cal induction of a change in cone angle. Experiments on the
alignment of polydomain smectic elastomers �21� by external
stress demonstrate that director rotation is easily possible and
is an important aspect of deformation, as it is also in nematic
elastomers. To conform to constraints while deforming at
low elastic energy, it is proposed that textures develop. The
laminates of these textures are at nontrivial angles to the
layer system and rotate with respect to the layers as the strain
develops. Different possible textures result according to ge-
ometry, the constraints at surfaces, the elastic shear energy,
the role of semisoftness, and the charging of internal texture
surfaces when they cut the polarization. One extreme case of
geometric disproportionation is discussed and found to be
unlikely. However, important determinants such as the rela-
tive roles of polarization and elastic cost are still most open
and experiments on large deformations are urgently required.
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APPENDIX A: ENERGY SCALE
� FOR DEFORMATIONS

We model smectic elastomers as essentially nematic elas-
tomers with strong constraints of layering. Thus � that scales
the underlying rubber elastic energy would be the shear
modulus for the rubber, were it able to enter its isotropic
state. More usefully one can relate it to certain shear or ex-
tensional moduli in the Sm-C elastomeric state. Elongation
along the ĉ0� x̂ direction, �xx�1, or shear with displace-
ment in the positive x direction, �xz�0, both do not rotate

the ĉ director, provided the layer normal k̂0 is fixed �for
instance by clamps or rigid plates�. We are assuming rigid
Sm order—for instance in-plane elongations are accompa-
nied by �yy =1 /�xx since contraction along z is forbidden �it
would alter the layer spacing� and these deformations are
two dimensional as in the case of Sm-A elastomers undergo-
ing similar strains �9� and which have been modeled in these
terms �10�. Without rotations and other shears, the free en-
ergy cannot drastically reduce, as in the rest of this investi-
gation. The free energies of such distortions are

f��xz � 0� =
1

2
��3 +

1

4r
�r + 1 + �r − 1�cos 2��2�xz

2  ,

f��xx � 1� =
1

2
�� ��xx − 1�2

8r
�r2 + 1 − �r − 1�2cos 4��

+
1

4�xx
2 �4 + 3�xx

2 + 2�xx
3 + 3�xx

4 � ,

with corresponding small strain moduli:
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kxz =
�

4r
�r + 1 + �r − 1�cos 2��2,

kxx =
�

8r
�1 + 30r + r2 − �r − 1�2cos 4�� .

A sense of how much easier deformation is with relaxation
can be seen in Fig. 12.

The moduli, along with the spontaneous distortion �or
limits to softer deformation and completion of charge switch-
ing� and conoscopy �for ��, give experimental insight into �,
r−1, and cos �.

APPENDIX B: THE EFFECT OF BIAXIALITY

Because layers break the cylindrical symmetry of the un-
derlying nematiclike distribution of chain shapes when it is
tilted with respect to the layers, the shape tensor is biaxial;

see Fig. 13. For Sm-C or Sm-C� systems the layer normal k̂
and the director n̂� define another plane, with normal n̂�∧ k̂.
�We now denote the rod director by n̂�.� Two of the principal
directions of the polymer shape tensor are in the plane

spanned by k̂ and n̂� and are denoted by n̂ and p1, and are
respectively associated with the longest �typically� and short-

est extents of �
=
. The third axis, p2, is along n̂�∧ k̂. �One can

see this from constructing �
=

from available double-headed

vectors in terms of n̂� � n̂�, k̂ � k̂, �n̂� · k̂��n̂� � k̂+ k̂ � n̂��
and 	= for Sm-C, and additionally �n̂�∧ k̂� � �n̂�∧ k̂� for

Sm-C�.� In a biaxial environment n̂, now defined in terms of
the shape distribution, need not be exactly parallel to the rod
director n̂�. It might have an angular offset, constant during
rotations, which is not important for rubber elasticity which
depends on �

=n.
We reduce the step lengths by that in the p1 direction so

that �
=

is

�
=

= rn̂0n̂0 + r1p2p2 + p1p1. �B1�

Typically, since layers can squash chains down, one might
expect the secondary aspect ratio r1�1. Assuming that lay-
ers convect with distortions affinely, that is, layer normals

evolve like k̂=�= −T · k̂0, and that layer spacing rigidly resists

change, that is, �k̂�=1, then one can show �14� that soft
modes leaving the layer normal unrotated are of the general
form �= soft=�

= n̂
1/2 ·W= k̂��� ·W= w0

��� ·�
= n̂0

−1/2. As in the remainder of
the paper, the director is rotated by an angle � about the

unchanging layer normal k̂. The other rotation by � is about
an axis w0 which is an auxiliary vector in the problem de-

fined as w0=�
= n̂0

1/2 · k̂. One must be careful to also rotate p1 so

that it remains locked to the plane of k̂ and n̂. This has the
consequence of making any shape changes resulting from the
biaxial aspects of �

=
slaves of the principal shape changes

resulting from n̂ and thus do not add essentially to the prob-
lem. The resulting �= soft is

�cos � cos � −
 


r/r1
sin � sin � −
r/r1



cos � sin � − cos � sin � ��cos ��1 − cos �� +
 


r/r1
sin � sin ��


 


r/r1
cos � sin � + cos � sin � cos � cos � −
r/r1



sin � sin � ��−
 


r/r1
sin � cos � + �1 − cos ��sin ��

0 0 1
� .
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FIG. 12. Energy of deformation against both positive �hard� and
negative �softer� shear �xz, and against extensions �xx�1 �dotted
curve; �xx upper scale� up to strains of ��= �0.246, for the values
of r and � adopted in the text. Note how much lower the energy of
distortion is if sympathetic relaxations and director rotation are
permitted.

k�z

c x�

nw

p
1

p
2
�y�

^
^

FIG. 13. The principal director, n̂, of the shape tensor is tilted

with respect to the layer normal, k̂, by an angle �. Thereby the other
two principal directions, p1 and p2, are distinguished to give a bi-
axial distribution and thus also a biaxial shape tensor �

=
, here seen in

section.
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The constant 
�w0 ·w0=1+ �r−1�cos2 � is unchanged from
before �see after Eq. �3��. The abbreviation � introduced in
Eq. �3� is also employed for brevity. The matrix is only
modified by some of the appearances of r being rescaled by
r1. The two vanishing elements ensure that the tensor �= −T has
no effect on the layer normal and arises from the choice of
axis of the second W= in the soft deformation. The second
angle � can be chosen so that the �xy component is zero. The
choice is slightly modified from the uniaxial case: tan �=
−

 / �r /r1�tan �. With this choice the elements of the defor-
mation gradient tensor, Eqs. �13�–�16�, are modified to

�yx =
sin 2�

2a
�1 − 
/�r/r1�� ,

�yz = ��sin � −
sin 2�

2a
�1 − 
/�r/r1��� ,

with a slightly modified a2=cos2 �+ �
 / �r /r1��sin2 � ap-
pearing here and also in the otherwise unaltered expressions
for �xx, �yy, and �xz. Unlike in the text, we have not replaced
the factor �1− 


r � appearing in the expression derived in �14�
by �r−1�sin2 � /r since now there is rescaling of r in the
denominator by r1. The shears that occur sympathetically to
the director rotation � are seen to be only slightly modified
by biaxiality. Recall from Eq. �23� that the target space lami-
nate normal s�� has an angle, ��, to the z axis given in terms
of these elements. It will thus be slightly modified in direc-
tion. Connection �25� now becomes

tan ��� = cos � tan � −
r

r − 1

r1 − 1

r1

cos �

sin � cos �
. �B2�

The first term is as before. The second term vanishes in the
Sm-A limit of �=0 since r1→1. A good qualitative under-
standing of Sm-C laminate-dominated deformations is thus
obtained by the neglect of biaxiality since no new element is
introduced by it.

APPENDIX C: NONLINEARITY AND APPARENT
ASYMMETRIES IN DEFORMATIONS

The nonsoft deformation �5� leads to a �yz apparently
asymmetric about �=� /2, or equivalently �xz=−�. �A dot-
ted vertical line in Fig. 4 at �xz=−� makes clear the lack of
symmetry.� Manifestly when ĉ has been rotated to ŷ, the yz
shear is geometrically maximal and should reverse to zero as
�→� just as it advanced while �→� /2. We demonstrate
that the failure of Eq. �7� and Fig. 4 to exhibit symmetry
about �xz=−� is only apparent. It is a consequence of geo-
metrical nonlinearity �the need to compound rather than add
finite deformations�.

Consider deformed states of the solid at �=� /2+�. One
can compound deformations,

�=� = �= �� · �=�/2,

where �=� and �=�/2 �unprimed tensors� are with respect to the
original reference state, X0 say, while �= �� is a deformation
gradient with respect to the reference state X� resulting from

the deformation �=�/2, that is, X�=�=�/2 ·X0. Using Eqs.
�6�–�8� with �=� /2 for �=�/2, and adopting form �5� again
for �= ��, one obtains, respectively,

�1 0 − �

0 1 �

0 0 1
	 and � 1 0 �xz�

�yx� 1 �yz�

0 0 1
	 .

In �= �� one has �xz� odd in � since it continues to decrease
below −�. Likewise �yx� is also odd since it has returned to
zero at �=0 and must now become negative for the second
half of the range of �. The shear �yz� is even since it reached
its maximum of � when the director points transversely and
then must decline again. The roles of x and y in shears in-
volving z have thus been interchanged in this reference state
for �= � with ĉ initially along ŷ, just as it was initially along x
for the reference state of �= . Important for this argument is
that rotations of �� are physically equivalent.

Consider the difference ��= in the �=�/2+� and �=�/2−�

tensors—it will expose any asymmetry in �= about the �xz=
−� point.

��= = ��= �� − �= −�� � · �=�/2

= 2� 0 0 �xz� ���
�yx� ��� 0 0

0 0 0
	 · �1 0 − �

0 1 �

0 0 1
	 ,

��yz = − 2�yx� ���� � 0.

The extra, yx, relaxation permitted in Eq. �5� has created an
asymmetry in �yz about � /2 that is not a reflection of the
true symmetry about �=� /2 that exists in yz shear. We used
in the �yz� this very �odd� symmetry with respect to the �
=� /2 state.

Likewise in Eq. �11� for soft deformations, allowing fur-
ther additional elements in �= introduces further geometrical
nonlinearity. The energy in the softer case however remains
symmetric about �xz=−�, as expected from the equivalence
of states with differing �; see the dotted curve in Fig. 3�a�.
The discussion around Eq. �19� gives an explicit value for
the xz shear at �=� /2 which is shown not to be −�, that is
not simply half the shear associated with a � rotation of the
ĉ director; geometric nonlinearity is responsible.

APPENDIX D: ELECTROSTATIC ENERGY
FROM INTERNAL FIELDS

The laminate surface charge densities are �lam=−�Ps�
which generate the displacement fields Ds�=�lam. The
electric-field energy density is 1

2D ·E with E= 1
�0

�=−1 ·D. From
this expression and given that D is in the s�� direction, it is
clear for the energy that we need the element ��=−1�s�s� that in
Eq. �30� and thereafter we have denoted by 1 /�:

fel =
1

2�0
Ds��s�s�

−1 Ds� �D1�

�no summation over s��.
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One can make various estimates of the relevant element.
One assumption would be to take �= to be uniaxial about the
director n̂. We have already made a similar assumption with
the �

=
tensor. However the Sm-C� phase is anything but

uniaxial in its electrical properties—it has ferroelectric order-
ing along the in-plane direction perpendicular to c. However,
one could take the view that the ferroelectric ordering is
sterically driven and remains rigid in the face of internal
fields. If one then is examining dielectric effects that result
from the polarization of the liquid crystal in the more con-
ventional sense, then perhaps the uniaxial assumption is not
so strange as may seem at first sight. In this event, one can
characterize �= by �� along n̂ and �� in the directions perpen-
dicular to n̂. In this frame, one can write �= simply and then
extract the element required for Eq. �D1�:

�=−1 = � 1

��

−
1

��

n̂n̂ +
1

��

	= , �D2�

��=−1�s�s� =
1

��

+ � 1

��

−
1

��

�n̂ · s��2, �D3�

with n̂ ·s�=cos � cos �+sin � sin � cos �. Rearrangement
with the aid of Eq. �25� gives n̂ ·s�=cos � sec �. This expres-
sion and further use of Eq. �25� reduces Eq. �D3� to

��=−1�s�s� =
1

��

+ � 1

��

−
1

��

�cos2 � + sin2 � cos2 �� .

�D4�

Thus the element denoted by 1 /� in our energy expressions
has some � dependence, but it is weak compared with the
dependence we concentrate on in the energy.
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